Fractional Choquard equation with critical nonlinearities
نویسندگان
چکیده
منابع مشابه
An Integrodifferential Equation with Fractional Derivatives in the Nonlinearities
An integrodifferential equation with fractional derivatives in the nonlinearities is studied in this article, and some sufficient conditions for existence and uniqueness of a solution for the equation are established by contraction mapping principle.
متن کاملThe Nehari Manifold for Fractional Systems Involving Critical Nonlinearities
We study the combined effect of concave and convex nonlinearities on the number of positive solutions for a fractional system involving critical Sobolev exponents. With the help of the Nehari manifold, we prove that the system admits at least two positive solutions when the pair of parameters (λ, μ) belongs to a suitable subset of R.
متن کاملCritical exponent of the fractional Langevin equation.
We investigate the dynamical phase diagram of the fractional Langevin equation and show that critical exponents mark dynamical transitions in the behavior of the system. For a free and harmonically bound particle the critical exponent alpha(c)=0.402+/-0.002 marks a transition to a nonmonotonic underdamped phase. The critical exponent alpha(R)=0.441... marks a transition to a resonance phase, wh...
متن کاملExistence of nontrivial weak solutions for a quasilinear Choquard equation
We are concerned with the following quasilinear Choquard equation: [Formula: see text] where [Formula: see text], [Formula: see text] is the p-Laplacian operator, the potential function [Formula: see text] is continuous and [Formula: see text]. Here, [Formula: see text] is the Riesz potential of order [Formula: see text]. We study the existence of weak solutions for the problem above via the mo...
متن کاملAmplitude equation for SPDEs with quadratic nonlinearities∗
In this paper we rigorously derive stochastic amplitude equations for a rather general class of SPDEs with quadratic nonlinearities forced by small additive noise. Near a change of stability we use the natural separation of time-scales to show that the solution of the original SPDE is approximated by the solution of an amplitude equation, which describes the evolution of dominant modes. Our res...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Nonlinear Differential Equations and Applications NoDEA
سال: 2017
ISSN: 1021-9722,1420-9004
DOI: 10.1007/s00030-017-0487-1